Section: Scientific Foundations
Optimal control problems in biomathematics
Controls in population dynamics can take various forms and generally speaking are governed by the anthropization of the environment, i.e., by the action of human populations on their environment. Prophylaxis, sterilization, vaccination, screening, quarantine, culling, re-introduction, capture, hunting, fishing, pesticides are examples of widely used control processes. It is then important to assess the impact of such actions on the considered population and to distinguish between what is actually feasible and what is not in terms of optimal management of resources.
A rather rich literature is available on this topic ranging from resource management in ecology to applications of Pontryaguin's maximum principle to mathematical biology problems.
In the framework of this research team-project, we investigate control problems for structured models (size, weight, age, health status, spatial location of individuals, age of the disease) from a biomathematical point of view. We will use both individual based models (IBM) and models using densities. Techniques to be used are mainly those from automatic control and the factorization methods described in section 3.3.2 .
Disease control
Some problems of prevention against disease propagation can be modelled as optimal control problem with control acting on subdomains and/or on certain cohorts. Then several optimization programs can take place depending on the severity of the disease and the cost of the control. The problem consists in minimizing or maximizing an objective function with constraints on the control and on the state.
For some of these problems concerning animal populations the objective consists in finding the smallest domain that can prevent the propagation of the disease : the reduced level of healthy individuals or the absence of any infected prevents the propagation. This is a control problem coupled to a shape optimization problem.
In particular, a somewhat “inverse problem” is one consisting in controlling an invading alien species by using a pathogen. Field experiments have been conducted, and simple mathematical models derived, cf. [6] , [25] .
Controlling the size of a population
This is a classical problem in demography. Various kinds of control can be used : control by migration, elimination (animal populations) or designing birth policies. Numerical and mathematical difficulties come from the existence of non local terms in the equation due to the mortality and renewal processes of the population.
Classical results of automatic control theory cannot be directly applied. Our last results on the topic show that one can control (after a time equivalent to one generation) a population (except the smallest age classes) by acting only on age classes of small size and localized on small domains. These studies could be extended to systems (populations structured by sex, prey-predator systems) and to other fields than demography but with similar difficulties (cell growth, epidemiology with sanitary structuration).
A study with S. Anita on the control of a predator population upon acting either on preys or on predators has been initiated. This is to be further developed toward a predator-prey system with species living on distinct spatial domains. In this new setting the question of where to act and on which species is more realistic.